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A SURVEY OF INCROMPRESSIBLE, TWO-DIMENSIONAL
UNSTEADY BOUNDARY LAYERS.

1.1. Introduction.

Boundary layers are formed on bodies in moving fluids
due to the action of viscosity. There are many types of flow
and body configurations and thus the range of unsteady boundary
layers is large. For the purpose of this paper, only a narrow
class of incompressible, two-dimensional boundary layers will
be discussed. Thus compressible flow of all types will be
excluded as will boundary layers on curved surfaces, rotating
surfaces and any other three dimensional bodies.

The term unsteady is further restricted to describe
motions in only three forms: impulsive starting, accelerated
and harmonic motions. Strictly speaking, the impulsive starting
is assumed to be acceleration over a distance short compared
with the body length. '

Despite these restrictions the paper will bring out the
essential features of the subject by setting out the basic
equations and then progressively working through the important
problems and solutions relevant to the subject.

2.1. The Navier Stokes' Equations.

The subject is of course founded on a study of the
Navier Stokes' Equations which in incompressible flow are most
simply written as:

2
f%f -;/(,{VVJ - 3md' b Egn. 1.
where /o = fluid density
W = velocity vector
}L = viscosity
b = surface force.
The equation of continuity is often required and is:
dVvw = (@] Egn. 2.

If the flow is assumed independant of the 2z direction
equation 1 becomes:

W o - nduw . 3.
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For cases where boundary layer theory is applicable, the pressure
gradient iéi—gLP _ *-Eﬁ} _ tl}j}
S adx ot Dx

3.1. Impulsively Started Plane Wall.

Although this problem is often referred to Rayleigh,
Stokes' obtained the solution first and thus it is more correctly
known as Stokes*' first problem. The nature of a true impulsive
start is probably very difficult to define and although the
problem refers to it as such, the real implied meaning is

"acceleration over a distance very short in comparison with
body length scales".

Nevertheless, a solution can be found to the problem of a
semi infinite region of incompressible fluid bounded by an im-
pervious rigid plane undergoing a sudden acceleration to a
steady velocity.
For zero pressure gradient equation 3 becomes:

w - v
¢ 37;1 . Egn. 4.

which is also known as a diffusion equation. The boundary

conditions to be satisfied are:
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The substitution

m - oy (%)

and assumption
u llo'{ﬁﬂ)

enables the ordinary differential equation to be obtained:

"
fe2mf =0
with boundary conditions
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The solution{is:

W = Llo ex-fcq

Egn. S.

where e(_f( = 2 g 2"[’“"‘1"""'1
{2

The velocity distribution resulting from equaticn 5 is shown
in Fig. 1.

Boundary Layer Thickness.

Defining the boundary layer depth as that at which the
velacity is 99% of the free stream value, it is clear that
when t/fc = 0.01 this results in the equation giving the bound-
ary layer depth. At e/fc = 0.01,«115 given as 2.0. Thus

§ = 4 Jve

This represents the depth of penetration of vorticity created

Egn. 6.

at the plate and its outward diffusion. It has a similar
analogy in heat conduction.

A more complete Solution.

The result given by equation 5 is the first approximation
for both two dimensional and axisymetric cases. However it is
not the complete solution to the problem of an impu!sively
started plane wall. If the wall is allowed to be of finite
length upstream then a further condition must be satisfied:

at x = 0, u=0 for all y, t
Effectively then, equation 5 is the solution when the upstream
edge is sufficiently far away to have negligible effect on the
flow.

Blasius considered this problem and assumed that a
stream function could be defined as a power series in time:

g (x,y,¢) = 2% {U go(m) + lkg_il £,() +}

Bqn- 7.

where §° and g. are functions of ™
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Now in the first instance after the motion has started from
rest the boundary layer is very thin and the viscous term
is very large vhereas the convective terms are of normal size,
The viscous term is then balanced by the non steady
acceleration W together with the pressure term of which the
contribution Y is of most importance.
If we aiiow the velocity to consist of two terms

\A(x,.t”(—) e uu(x)(j,t)" L('(X’LJ’ \)

The first approximation U. thus satisfies the equation

Q_Ll—u = ’A_L-l -+ ’Dajuo
ok ot dy* Egn. 8.
with boundary conditions Yy=0  Ue =
Y=o  Ue = Ue,e)

(assuming a system of coordinates stationary relative to the
plane wall).

Putting in u and v into equation 8 results in
i

?} + 21 ?.” - o
as a first approximation with boundary conditions:
Co = q.'=o aA m =o
= I oA M =o
Equation 8 re;ﬁlts in the solution given in equation 5 and
Fig. 1.
Returning to the approximation culminating in equation 8,
the equation for the second approximation U, is obtained by

calculating the convective terms from Uo . This results in:

u, - vy, o WAW udue - v u.

with bhboundary conditions:
u. =0 ot \:, = 0
u,=0 at 3 =R
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Thus a differential equation in S] results in:

]
g. +1~1§,~4'§’.= 4('5 ~§.5" 1)
with boundary conditions
?t;q.‘:o ak M o
?|’:° ad Mz oeo
The solution for the second approximation as derived by
Blasius is

{0 = f'IQA‘) "lcx.{-("'l 1».1(2'[ lJQJ{‘ﬂI-f‘LL‘F 7_,.1 "——"72"‘{’ ,v]
&
+ 16‘qu -,‘1‘. Crk "l * (m Zn"' {”f c‘f ") r’(’lh) 4')0/f <1 }

Transition from Stokes' first problem flow to Blasius

impulsively started plane flow.

Stewartson (1951) considered in more detail the connection
between an infinite and finite plate moving from rest impul-
sively. The first method of approximation used Rayleigh's
analogy (Rayleigh also solved Stokes' first problem) in which
it is assumed that all convection takes place at the free
stream velocity.

Thus the term ll)bk is dominant in equation 1

i.eo ;bj& = - U)u -+ '\) a___& Eqno 11.
ot ox YRS
by defining ¢ = 35:
3

equaticer i1 can be shown to have the solutions

0 = UQxﬂc ?/x when T <!
:UU("(qt‘%) when T >

Thus for T <0 the flow is independent of > (Blasius flow)
but for tr >1 the flow is of Rayleigh type. This means that
as the time for motion increases, the flow over a plate changes
at T=t from Blasius to Rayleigh flow. This first approximation
is valid only near the edge of the boundary layer.

Higher order approximations still show the existance of
mathematical singularities or an abrupt change in the flow
characteristics - not a likely physical reality.



3.2. External flow undergoing an impulsive increase in velocity.

Watson (1958) considered the problem of the external
flow velocily over a plate undergoing an impulsive increase
to a new value. Thus WE) is constant at one value for & < O
and a higher constant at ¢ >0 ,His analysis showed that the
skin friction rises sharply at the moment of impulse and then
gradually decays to a higher limiting value. This results from
the formation of a secondary boundary layer next to the plate
and whose thickness is of the order fsz‘. This secondary layer
is described by Stokes' first problem (or Rayleigh layer) in
the beginning and its growth gradually causes the distortion
of the primary layer to its new shape.

A point of considerable interest arising from this feature
is that a separating boundary layer when exposed to a sharp
increase in free stream velocity must experience an increase in
skfn frictisn such that the point of separation is moved
further downstream. This may account for stall hysterisis
effects to be described in more detail later on.

3.3. Boundery layer formation in accelerated motion.

Blasius also calculated the boundary layer formation for
accelerated motion of a body and the results are very similar
to those of impulsive starting.

The potential velocity of the body is now given as:
t £o0 Lx ,60 = O

t >o Ll , ¢) = bE.woo
Following the method of successive approximations out-

lined earlier, a stream function is defined as

L((X)y’t) = Z/,;;{L’N(so(”l)f‘ Eswg_r_:, ;,"T\-&-}
u"‘»ﬂ)e) = .u,({.,’-f('t % s,'-&---)

and equations for g, and g, result in:
Sln‘|+ 2"1?:'—‘4?" = —'t"

e v amg) -i2g, = ~w AL (sl -6.8")
with boundary conditions

~

o'\ro %':Q,I:O )?':q‘=0
m =% i,':l , §. =0
6



/
The solution for §: is given as

o = 1t JT:'T_—") exp-M (1 +27) ek Egqn. 12.

3.4. The flow near an uscillating flat plate.

This problem was first solved by Stokes and is knowm as
Stokes' second problem. This starts the discussion of harmonic

motions of either the body or the free stream. It is a fact
that steady flcw is a limiting case of unsteady flow and this
serves to emphasize the imb~:tance of its study.

Stokes' second problem was concerned with a time averaged
stationary semi infinite volume of fluid bounded by an infinite
impervious rigid plate performing harmonic oscillations.

Thus the boundary conditions defining the problem are:

Y=o, uw = U Gc nt for aly t

= R W =
defining tgrms ’k B ;9: and 7 = _‘jE
equation 4 can be solved assuming a separable solutionte give:

Lt(tj'k) = uoC‘”]Cds(’\("‘”{) Tgn. 13.
where N = harmonic oscillation frequency in rad/sec.

The solution is sketched in Fig.2 for several instants
of time. The interesting feature of this damped harmonic
wave is that fluid layers JﬂJ§;;a1 apart oscillate in phase
and this separation is sometimes known as a depth of penetration
of the viscous wave. The boundary layer depth has a thickness
of order '
é - VA
Egn. 14.
This also has a similar analogy in heat transfer. By an
appropriate coordinate transformation,, the situation of a
stationary surface under a: oscillating free stream can be obtained.
This necessarily involves avirtual pressure field to be in-
troduced to account for ine:tial effect. Alternatively, the
perj . 'ic solution of equation 3 with
de

_...nUcSmnt s -1
P Ox
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with boundary conditions w = d ﬂ =0
Ww U¢ (n:nfj = o0

1"

-m
is W = WeCosat- Ue “Coslat-~) Eqn. °5.

Thus an equal and opposite oscillating velocity has merely
been added to equation 5.

The principle feature of interest contained in equation
15 is that the skin friction or velocity gradient at the surface
leads the free stream velocity by T/4

3.5. Unsteady Couette flow.

This probleﬁ is similar to Stokes' second problem but
with the flow fluctuating velocity not zero at infinity but
a distance § from the plate. Thus we can provide a solution
for two out of phase oscillating infinite parallel plate.
(Cowette flow). The problem again has a similar analogy in heat
transfer, and the solution as found by the author is given below.
Equation 4 is therefore to be sclved with the bruandary
conditions

W(o,t) = 0o 4 y=o,
L\v (S)e) = ngCan" a)' j-: {

where S = distance apart or plates
n = harmonic frequency

Assuming a separable solution and writing

b

¢ = nt

nd
a - 257

the general solution becomes

b b
W= L{i[(oni finhd (C los(bec) - € Gos -b) fS-‘na(osL.l(c"f:«Ld -é "I.'.(c—l»)}sqn. 16.
2 CO-H'!A gn'\ld"\‘ gu\‘dCosktd

This can be considerably simplified when b and d are much
smaller than unity. Hence



u.o .tl.a"'
w = = Gsa

.

w == Uoy Gos nt Eqn. 17.
S’L
Also the shear stress is proportional to gﬂ5 ‘
dy
_d—‘& - ,_(,Lo ;s_n"gl-f\n*’
dy £

so at the wall the shear stress becomes zero.
Another simplification can be made when b and d are large -
typically above T

Hence w o= W ’g__béo:(d—l:.-c)
d
e
L G (A4t
w = Ue %C)s(j%é’_.]%_nf)
e

Plots of varying instants in time and plate separations can be
seen in Fig. 3.

3.6. Periodic Boundary Layer in the abksence of a mean flow.

For the cases where boundary layer theory is applicable
equats. 1s 1 and 2 written more fully for two dimensional flow

are: ]
du 4 udw . Viu ?;L’L JUU 4 2 um
ot dx oy ot d x oyt
and 4+ v =0
dx 3y

When considering the case of an oscillating free stream
above a plate, Schlichting (1932) followed the approach'outlined
below: '

Rewriting the equation above:

oW )[L - lka,\/_l « TR + Vou
%% ‘)_a'gt '—‘)": ¢ x 5:‘- 2—5

if f& is small, (where l « typical length scale parallel to
the wall) the terms on the right hand side are zero or small
compared to those on the left. Providing we intend to find
the first order oscillating motion and the dominant part of
the resulting second order steady motion then the boundary

layer approximated equations above are valid.



Defining M - ‘j,/%

8

a first approximation to the stream function QQ is

nk

% ] ¢
-\‘F' = (Z{_‘)’) (e (22 {,("[) € Eqn. 18.
where the free stream oscillating velocity is

(/(- - (Jlo(x) Gos ni ,
£, scAsfies ?""4 2¢ (1+ ?‘) = O
with conditions s, = {.': o at m =o

g‘.-a [ a3 m —= oo

thus ?| = - (l:__(')<l - C—(H’L)n) + M
td

This refers to that part of the boundary layer which has a
harmonic response similar in frequency to the external flow.
The skin friction has a phase lead of Tl/4 over the velocity
fluctuations.

The ccmponént of velocity parallel to the wall is given
by equation 15 but the flow velocity normal to the wall is:

v/, ’ -1 - )
v, = - (27’3_’) * e 0 g")(.ss nt + (_:..(05(""*;7-")*% é”("*’")‘ﬂ qn. 19.

Outside the boundary layer the third term tends to zero;
the first term is the contribuvtion resulting from continuity
and the second term, the displacement effect of the boundary
layer on the external flow, otherwise known as the diffusion
of periodic vorticity.

A higher order approximation predicts a second harmonic
response or non linearity and also that a steady flow exists
outside the boundary layer. The steady motion is generated
by the Reynolds' stress associated with the osillatory part
of the flow within the boundary layer and its persistance
outside the c¢scillatory boundary layer because of the action
of vorticity.

A Reynolds'number based on the steady velocity of the
streaming motion and a typical body length was found to be

an important parameter in the va’ 1lity of the equations.

- 10 -



If Re is small enough for linearisation of the Navier Stokes®
equations to be valid, Rayleigh showed that periodic vortices
are formed above the surface. This was an explanation of the
movement of dust particles in a Kundt tube.

If Rc is large, there exists a second outer boundary
layer at the edge of which the velocity is zero. Within this
layer it is not valid to neglect the non linear inertia terms
and the usual boundary layer ideas show that its thickness is
of the order

f _ (l““ where | = body length
W Ue = body maximum velocity

This is much thicker than the inner boundary layer of thickness
gs-,341 because _Q!_ was assuned large.

U

3.7. A laminar boundary layer with fluctuations imposed on

the free stream velocity.

This problem was solved by both Lin (1956) and Lighthill
(1954) and only considers fluctuations in magnitude and not
direction of the free stream.

A frequency parameter of im portance is 11£1
where § is the unperturbed boundary layer depth? It is
proportional to alls where lls is the mean free stream velocity
and | a typical length parallel to the body. The free stream
velocity consists of a steady value Uo and a sm3ll harmonic
perturbatinn é(lae°“> At the edge of the boundary layer,

‘nt
we,t) = Uey(i v ee)
Allowing the velocities u and v in the boundary layer to have
harmonic perturbations gives

w = U,(x,;j) + C—LL'C‘."

‘nk
v = Ve (x,y) +C y(x,y)ec
where U;and V, are the fluctuating parts of the velocities in

t

the boundary layer.
By assuming that € is small linearisation produces for
the fluctuating component

L'nu, + “0?_“_! -\-uqa..u-‘- +Vo_a_l_1\ +V.3u. - L.’\u' +—i(uol)1 '1)31":'
dx 0x y y dx Eqn’20.



and a“’l + a_‘fj =0
PE: L)

Now W is a function of % and jju"/‘“ so as N tends to

zero

- + 2t oUe
w, = We .1 33
\IS - ‘( 33\)»)

A

2
Now putting (u,,v,) = (Us,\rc) +(U,.)Vn) where (Mn) Va)
are of the order N and using the fact that (Uslu’;) is a

sclution for N >0 we get

L.n tha + Woe aLL_-\ 4 u“‘;.).g." + Vo D_L‘_:u 1 Va bd.. —'D}."J- = n (u,a -—u,,s)
ax ox Qy a:j Jj‘
oUhn LYV~ =0
dx 2Y

Subject to boundary conditions Un = Vn =06 ot Y=o

Using a Karman-Pohlhausen method Lighthill showed that

W = (a4 ‘(l —"17‘[/"’1 L2A)- 4 )"11} Eqn. 21.
e R
where M = ?-

and A

1]
-,‘-5
—~
e

~
oL
F
D
oy
o

For large values of nN g , equations 20 simplify to:

. >
MW, = (au, + DU,
oyt
where %_“, = 0 ot Y o
oy
and U, — U.x) as y >
_3,;'9
thus w, = Llo()()( - ¢ b ) Egn. 22.

This is equivalent to Stokes' oscillating plane solution
and shows that the boundary layer only has a non instantaneous
regsponse close to the wall i.e. within a normal Stokes' layer
which is of thickness JT;Z?

The skin frictions derived from equations 21 and 22
both show a phase lead over the free stream oscillating flow.

- 12 -



3.8. The flow near an oscillating stagnation point.

This forms a combinatlon of two classical flows - namely
plane stagnation point 'low against a plane wall and an infinite
wall oscillating in an otherwise stationary fluid, )
The component of velocity parallel to the wall is denoted
by W= (e ?eu 2" whilst the normal component is w =
Wo + €w, €' "' where W , U, Wty are functions of X and Yy
As y tends to infinity U« tends to ax and w., tends to ~ay + 0:¢S I—
vhere a4 = constant. Definingm= yl—g the steady velocities
within the boundary layer are given by u.»cxxfﬁﬁ\) and w --Jkn{wp

The above eguations for the steady velocities were
obtained by Blasius when considering plane stagnation flow at
the front of a large cylinder.

The problem then is to find U, and U, subject to the
conditions that U, reduces to a given value at the o< illating
wall and to zero at large distances from the wall whii.t Wi
is zero at the wall. An exact solution of the Navier Stokes
equations exists for all values of £ and A in the form

u, ;gm) , W, =o when f satisfies,

e fe-ft matme
with ¢ =t ot M =v¢
5.—;0 ot m >

The quasisteady solution as AN tends to zero is
a
= 4 /1 >
Thus L{he velocity for the flow impinging on a wall
moving with constant velocity € is given by

w arf v + € [imy Jf@

W “Jay {fo

For large values Ofa{l the solution contains as a first
term the solution to an oscillating wall with zero mean flow
mainly because‘/_VZ is much greater than [ 7/, so that
there is little interaction between the two parts of the flow.

The skin friction phase lead tends to 77/(/, as n/m in-
-creases and also the amplitude tends to grow as /_;":

W

it

- 13 -



3.9. Separation in an unsteady laminar boundary laver.

Separation in a laminar boundary layer is caused by the
inability of the layer to remain attached when an adverse
pressure gradient of sufficient value exists. This is charac-
terised by the loss of shear stress or zero slope of the
velocity profile at the wall. The fluid particles nearer the
wall possess lower kinetic energy and thus when a constant
negative pressure gradient is impressed on the boundary layer,
the profile progressively suffers zero or negative slope from
the wall outwards as the pressure gradient increases. This
definition is unambiguous and generally applicable in steady
flowvs.

However, in unsteady flow this simple criterion cannot
be unequivicably applied because a zero or negative profile
can occur at several points in the layer and yet not necessarily
result i- a boundary layer edge streamline deformation caused
by viscous-inviscid interaction. The unsteady boundary layer
equations predict profile inflections and zero slope points
even vhen the boundary layer approximations are assumed valid.
No inviscid interaction is predicted and thus the steady
state definition of separation is not acceptable,

Despc :d and Miller (1971) carried out an experimental
investic ation of the unsteady separation of a laminar
boundary layer subject to a periodically varying negative
p 2ssure gradient and free stream velocity. The results
indicated that separation of such a layer, resulting in
viseous -~ inviscid interaction and thus boundary layer outer
streamlire deformation could be reasonably defined as occuring
when t%e profile gradient was zero or less over the complete
cvele. They caused good collapse of data by an empirical

formula given below ;

11T -@. =0-2{ g 433
Ns = Xs-Xs = 113 ol R o
xss s )
where ) } x aLE dx
e - Ixo dv

S:‘x (3‘{) ""(gﬁ)x; %

- 14 -



where As = fraction movement of separation point.
X5y = steady flow separation point.
X5 = unsteady flow separation point (Note that by the
definition given above, this point is stationary)
Xo = point at which the pressure gradienf becomes
positive for the last time.

Re = W
»

f o= o
A ::A&(/u_

4 d/:mmuc head
IA = free stream mean velocity
AU = free stream velocity perturbation.

N = harmonic frequency of flow oscillation.

The strong dependance of separation point movement on
Reynolds number is obvious since the faster flow boundary
layers have greater kinetic energy and thus for the same
flow perturbation are less affected than their slower flow
counterparts. The frequency dependance is such that as the
frequency rises, the unsteady separation point moves towards
the steady flow point. This is also intuitive because as
the frequency rises the Stokes layer becomes non interactive
with the main layer by virtue of its thinness (0 f?)
and the main layer merely responds quasisteadily to the flow
velocity changes. Thus at high frequencies the dominant
viscous effects at the wall obviate separation.

4.1. A Turbulent Boundary layer with a fluctuating free
stream.

The major difficulty in a mathematical treatment of this
problem is that the responses due to a series of small changes
of input cannot be superimposed to give a final response as
in linear problems. The unsteady turbulent boundary layer
depends on the instantaneous free stream velocity and also
its past history.

Karlsson (1958) conducted an experimental investigation
into this problem and found that for frequencies from 0-48 Hz
and free stream fluctuations of up to 34% of the nean, barely
detectable non instantaneous response occured.

- 15 -



He concluded that at a Reynolds number based on momentum
thickness of 3.6 x 103, the instantaneous boundary layer could
be calculated from a knowledge of the instantaneous free
stream velocity. The fluctuating free stream had very little
fluctuating static pressure.

It is intuitive that the response of a boundary layer
to a fluctuating pressure gradient be non linear owing to
viscous inviscid interaction. It is possible that the outer
edge of the turbulent boundary layer responds in such a way
and also that the fluid adjacent to the surface changes
character from viscous to inviscid flow if separation is
imnminent. These likely properties of boundary layers subjected
to fluctuating pressure gradients seem a probable explanation
of the effect of stall hysterisis on aerofoils.

Goldstein contains an account of this phenomenuym and it is
thus known from experiment that a fast incidence in :rease
near stall can result in a high 1ift increment - greater

than that expected from quasi-steady theory. The delay of
separation seems the probable cause. Conversely, a sharp
drop in incidence results in an '"undershoot" of 1lift probably
caused by non reattachment of the flow,

5.1. Concluding Remarks.

The principle features of incompressible unsteady
boundary layer analysis have been outlined and it is evident
from the works described that the most important properties
were discovered by Stokes and Rayleigh prior to Prandtl’s
boundary layer theory.

Svokes' first problem, the accelerated wall evolves
and becomes the Blasius steady state laminar boundary layer,
whilst his second problem, the oscillating wall provides
the inner wall solution to the work done by Lin and Lighthill.
Also, the well known parameter diffusion time results from
the analysis. (Diffusion time = ;Z, where § = distance
over which the vorticity or momentum transport acts and ¥
the kinetic viscosity.).

Rayleigh discovered mathematically the existance of

stecady streaming or an outer boundary layer near an oscillating
body. This results from net mean motion caused by the

- 16 -



Reynolds' stresses generated by the oscillating flow and thus
explains the motion of dust particles in a Kundt tube.

Finally, little theoretical work has been done on
turbulent boundary layers because its non linearity obviates
exact or simple approximated solutions.

However, by assuming that the effective viscosity is
much higher than ¥, as in steady state mixing length theories,
one would expect that the Stokes' layer would be much thicker
and thus be a proportionately more important part of 1.
unsteady turbulent boundary layer. The experimental work
started by Karlsson did not verify this because the laminar
sublayer was almost three times as deep as the Stokes' layer
and thus a turbulent Stokes' layer could not occur.

It was finally pointed out that probably the most im-
portant unsteady boundary layer effect resulted from sep-
aration point motion thus allowing viscous -~ inviscid inter-
action.
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